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Q1

Write a simple linear model in matrix form. Express the OLS estimates using matrices

Let Y be the N × 1 vector of outcome variables such that :

Y =


Y1

Y2

...
YN


Let X be the N × 2 matrix of observables, including a constant so X = [1, X̃] (where X̃ is a N × 1
vector). Eventually, let ϵ be a N × 1 random error vector.

A matrix model for the linear regression can be written using β as 2× 1 coefficient vector :

Y = Xβ + ϵ (1)
Y1

Y2

...
YN

 =


1 X1

1 X2

...
1 XN

(β0

β1

)
+


ϵ1
ϵ2
...
ϵN

 (2)

Using this formulation, the minimization of the squared residuals is :

min
β0,β1

(Y −Xβ)′(Y −Xβ)

⇐⇒ min
β0,β1

(Y′ − β′X′)(Y −Xβ)

⇐⇒ min
β0,β1

(YY′ − β′X′Y −Y′Xβ − β′XX′β)

Using the fact that (A−B)′ = A′ −B′ and (AB)′ = B′A′ to go from line 1 to 2. Now notice that
Y′Xβ is (1×N)× (N ×2)× (2×1) i.e, it’s of dimension 1. Therefore, Y′Xβ = (Y′Xβ)′ = β′X′Y.
In the end, the objective function is :

min
β0,β1

(YY′ − 2β′X′Y − β′XX′β) (3)

You did not have to do that, but for illustration purposes using the rules of matrix differentiation

i.e ∂(b′a)
∂b = a and ∂b′Ub

∂b = 2Ub, we can differentiate the objective function with respect to β, and
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have the (necessary and sufficient, as we minimize a convex function, we have a concave problem)
first order conditions:

∂

∂β
(YY′ − 2β′X′Y − β′XX′β) = 0

⇐⇒ 0− 2X′Y − 2XX′β = 0

⇒ β = (XX′)−1X′Y (4)

Express the variance of the OLS estimates using matrices

Here, we assume that X is non random, and we are just interested in finding the sample variance,
under our assumptions. Note that in the more general case, where X is also random (i.e, before
sampling the data, we know we will not get the whole population, so we still need to account for
randomness in X), you would compute the variance of the estimator conditional on X, i.e, knowing
what you know about X1

So we want to know V(β):

V(β) = V(XX′)−1X′Y)

= V((XX′)−1X′(Xβ + ϵ))

= V(β + (XX′)−1X′ϵ)

= V((XX′)−1X′ϵ)

= (XX′)−1X′V(ϵ)((XX′)−1X′))′

⇒ V(β) = σ2(X′X)−1 (5)

Where we use the linear model assumption to go from 1 to 2 (i.e, that Y and X are linearly
related). To go from 3 to 4, use the fact that β here is not a random variable, it’s a known value,
and the variance of a known value is null (e.g, the variance of a random variable that is always
equal to the same value is 0, it never changes). To go from 4 to 5, use V(AX) = AV(X)A′, the
homoskedasticity assumption i.e V(ϵ) = σ2 and finally reduce using the properties of the transpose
operator to obtain equation 5

Use the above formula to express the standard erros of both the intecept and the slope
estimators in terms of x̄, σ, Sxx

Let x̄ = 1
N

∑N
i=1 Xi, and Sxx =

∑N
i=1(Xi − X̄)2. We will now focus on (X′X)−1.

1Taking an overall estimator of the variance of the estimator requires further information on how we get X
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First, focus on X′X:

X′X =

(
1 1 ... 1
X1 X2 ... XN

)
×


1 X1

1 X2

...
1 XN


=

(
n

∑N
i=1 Xi∑N

i=1 Xi

∑N
i=1 X

2
i

)

Inverting a 2× 2 matrix is easy using the determinant formula, provided ad− bc ̸= 0 :

A =

(
a b
c d

)
⇒ A−1 =

1

ad− bc

(
d −b
−c a

)
Using this method :

(X′X)−1 =
1

n
∑N

i=1 X
2
i −

(∑N
i=1 Xi

)2
( ∑N

i=1 X
2
i −

∑N
i=1 Xi

−
∑N

i=1 Xi n

)

Now, notice that:

Sxx =

N∑
i=1

(
Xi − X̄)

)2
=

N∑
i=1

(
X2

i − 2XiX̄ + X̄2
)

=

N∑
i=1

X2
i − 2

(
N∑
i=1

Xi

)
X̄ +

N∑
i=1

X̄2

=

N∑
i=1

X2
i − 2

(
N∑
i=1

Xi

)(∑N
i=1 Xi

n

)
+ n×

(∑N
i=1 Xi

n

)2

=

N∑
i=1

X2
i − 2

(∑N
i=1 Xi

)2
n

+

(∑N
i=1 Xi

)2
n

Sxx =

N∑
i=1

X2
i − 1

n

(
N∑
i=1

Xi

)2

(6)
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Hence, using equation 6 back to invering X′X:

(X′X)−1 =
1

n
∑N

i=1 X
2
i −

(∑N
i=1 Xi

)2
( ∑N

i=1 X
2
i −

∑N
i=1 Xi

−
∑N

i=1 Xi n

)

=
1
n∑N

i=1 X
2
i − 1

n

(∑N
i=1 Xi

)2
( ∑N

i=1 X
2
i −

∑N
i=1 Xi

−
∑N

i=1 Xi n

)

=
1
n

Sxx

( ∑N
i=1 X

2
i −

∑N
i=1 Xi

−
∑N

i=1 Xi n

)

Now, we can find the variance-covariance matrix of the estimators β0 and β1 using σ2X′X
−1

. Use
the diagonal elements to find the variances of the coefficients :

V(β0) =
σ2

n

Sxx

N∑
i=1

X2
i

=
σ2

nSxx

Sxx +
1

n

(
N∑
i=1

Xi

)2


=
σ2

nSxx

(
Sxx + nX̄2

)
= σ2

(
1

n
+

X̄2

Sxx

)

⇒ SE(β0) = σ

√(
1

n
+

X̄2

Sxx

)

I use equation 6 to go from line 1 to 2, the fact that 1
n

(∑N
i=1 Xi

)2
= nX̄2 to go from 2 to 3.

For β1 :

V(β1) =
1
n

Sxx
nσ2

=
σ2

Sxx

⇒ SE(β1) =
σ√
Sxx
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