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Abstract

Background: Fuel treatment operations help to mitigate the spread and severity of wildfires in numerous
ecosystems. As they aim at fragmenting the fire landscape, they also fragment wildlife habitat. This poses a
dilemma for land managers, in the form of a trade-off between lowering wildfire patch connectivity and main-
taining wildlife habitat connectivity. Previous studies have investigated the spatial allocation of fuel treatments
over time, mostly without specific care devoted to biodiversity, in a variety of case studies. However, they lack
generality and an interpretative framework. We use dynamic programming and graph theory on every possible
theoretical landscape configuration to gain a general understanding of the allocation of treatments over space
and time and the corresponding landscape properties with various habitat connectivity targets.

Results: Our results show that all initial landscapes converge to steady-state landscape cycles. Moreover,
we show that there exist optimal trajectories that significantly reduce wildfire risk while safeguarding habitat
connectivity. As the policy budget increases, more risk reduction is achieved, albeit with a decreasing marginal
efficiency, and more steady-state cycles emerge. As habitat targets increase, increasing the budget is of no
effect, and risk increases, while the number of steady-state cycles decreases. Landscapes are less risky, more
fragmented, and diverse when the budget is large and biodiversity targets are low, while they are more compact
and less diverse when the opposite is true. Treatment allocation follows graph centrality measures, and central
cells are treated first. When the budget increases, fewer central cells (i.e. edge patches) are treated as well.
When biodiversity targets increase, central cells are no longer treated as they decrease habitat connectivity.
Treatment is reshuffled to the edges of the landscape.

Conclusion: Computational experiments generalize existing results. Using graph theory, general insights
can be gained, and help managers faced with multiple objectives in forested landscapes. From a policy per-
spective, in the face of climate change, increasing treatment budgets should be a priority to avoid increasing
damages. A key guideline is treating a variety of seral stages to create landscape diversity, mitigate risk and
guarantee the connectivity of wildlife habitat.
Keywords : Fuel treatment, connectivity, wildfire risk, wildlife habitat, spatial optimization, graph theory

1 Introduction1

Hazardous and intense wildfires threaten forest resilience and can cause ecosystem shifts (Coop et al. 2020). They2

also cause dramatic impacts on biodiversity across taxa (Wintle et al. 2020). Moreover, intense wildfires cause3

human damages, in the form of direct asset losses: in 2018, wildfires in California have caused $ 27 billion (Wang4

et al. 2021). Indirect costs are also of concern, especially related to wildfire smoke (increase in PM 2.5 concentrations5

have important health impacts (Burke et al. 2023, Heft-Neal et al. 2023), recreation values are affected in the US,6

amounting to $USD 2.3 billion (Gellman et al. 2023)). Eventually, large wildfires are of importance in the face7
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of climate change releasing a lot of greenhouse gas and reducing the atmospheric carbon sinks (Zheng et al. 2023,8

Sweeney et al. 2023). Global warming affects water supply and fuel moisture (Jolly et al. 2015, Abatzoglou and9

Williams 2016, Ruffault et al. 2018), and is projected to increase the frequency, severity, and magnitude of wildfires10

(Wasserman and Mueller 2023). Recent wildfire events in California (since 2018), in Australia (2019-2020), and in11

Europe (France, Portugal, Greece in 2022) have epitomized these trends.12

In numerous regions, such as conifer forests in California (Vaillant et al. 2009, Kalies and Yocom Kent 2016,13

Low et al. 2023), eucalypt forests in South Western Australia (Burrows and McCaw 2013, Boer et al. 2009, Florec14

et al. 2020), southern Europe (Fernandes et al. 2013), evidence shows that fuel treatments (e.g. prescribed burns,15

mechanical thinning and managed wildfires), can mitigate wildfire intensity and spread. Land management agencies16

have historically implemented these policies in Australia (Burrows and McCaw 2013), Europe, and the United States17

(and are projected to ramp up, for example under the Infrastructure Investment and Jobs Act of 2021 in the US).18

Understanding the spatial allocation of treatments, as climate change impacts negatively both costs and feasibility,19

is a major driver of policy success (Williams et al. 2017, Florec et al. 2020).20

By changing the structure of the landscape, fuel management operations also affect the structure of biodiversity21

habitat, notably, its structural connectivity (Taylor et al. 1993). Maintaining habitat connectivity, through wildlife22

corridors, landscape links, and ecoducts (Turner 2005, Turner and Gardner 2015), is instrumental in mitigating the23

biodiversity crisis. Species richness and diversity are intimately linked to landscape connectivity (Olds et al. 2012,24

Tian et al. 2017, Velázquez et al. 2019) and are necessary to maintain ecosystems in the future. The impact of fuel25

treatments on biodiversity remains a debated topic. Evidence suggests that maintaining a variety of vegetation26

types and ages on a patchy landscape maintains a ’fire mosaic’ (Sitters et al. 2015) (e.g. landscape level variations in27

habitat types that provide habitat to an ecological community) or that fuel treatment can be beneficial to wildlife28

(Saab et al. 2022, Loeb and Blakey 2021) and even restore local populations (Templeton et al. 2011). On the29

other hand, treating at too high a frequency may be detrimental to biodiversity (Bradshaw et al. 2018). Overall,30

implementing fuel treatment challenges the connectivity of wildlife habitat. In this context, understanding the31

trade-offs between risk reduction and biodiversity conservation, as well as the spatial patterns of operations that32

could reconcile the two objectives is key. In this study, we investigate the spatial allocation of fuel treatments to33

optimally reduce wildfire risks while maintaining biodiversity habitat.34

A substantial literature has applied optimization techniques to tackle the spatial allocation of fuel treatments.35

Analytical (Finney 2001), simulation-based (Finney 2007, Rytwinski and Crowe 2010) or mixed-integer program-36

ming techniques (Wei et al. 2008) have solved the allocation of treatments in a static framework. Given the dynamic37

nature of fuel growth, studies based on mixed-integer dynamic programming (Wei et al. 2008, Minas et al. 2014,38

Rachmawati et al. 2015; 2016) have studied the temporal and spatial allocation of fuel treatments on real and39

simulated landscapes. While they solve the spatial treatment allocation problem in forests, these articles fail to40

acknowledge the multiple uses and objectives land planners have to consider, such as habitat conservation. Several41
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articles have devoted their attention to the spatial allocation of treatments while conserving habitat, and inves-42

tigated the trade-offs between risk reduction and biodiversity conservation, using spatial heuristics (Calkin et al.43

2005, Lehmkuhl et al. 2007) and linear programming (Williams et al. 2017, Rachmawati et al. 2018). Most of the44

existing literature focuses on case studies and lacks a general interpretative framework to generalize its results.45

Graph theory offers a toolbox suited to analyze the properties of connected patches of land with varying charac-46

teristics, and has extensively been applied in landscape ecology (Urban and Keitt 2001, Minor and Urban 2008,47

Rayfield et al. 2016). Recent research focusing on the allocation of fuel treatments has leveraged tools from graph48

theory (Matsypura et al. 2018, Pais et al. 2021a). Reconciling habitat and wildfire risk mitigation using graph49

theory is a recent research endeavor (Rachmawati et al. 2018, Yemshanov et al. 2022) and has focused on specific50

case studies.51

In this article, we leverage graph theory on an exhaustive set of theoretical landscapes to study the general52

patterns of treatment allocation emerging from a multi-objective, dynamic, and integer landscape management53

problem, governed by connectivity. We analyze all the landscape configurations resulting from a 20-period planning54

horizon, for regular grid landscapes, in a graph theoretical perspective. In doing so, we examine the fuel treatment55

patterns resulting from all the range of habitat connectivity, in order to characterize long-term landscape properties.56

We characterize the landscapes using a range of ecological indicators and find general mechanisms and guiding57

principles applicable to a broad class of settings, to guide decision-makers and foster new efficient multi-objective58

graph theory algorithms.59

Our contributions are several. First, we provide a spatial framework to understand the trade-offs between60

wildfire risk reduction and biodiversity conservation. Using graph theory, we derive general principles regarding61

the spatial characteristics of landscapes and treatments from an exhaustive set of theoretical landscapes to guide62

policymakers as well as future research in heuristics to reconcile conflicting land-based phenomenons. Eventually,63

we characterize the risk and biodiversity profiles consistent with a changing climate, where windows of opportunity64

are shorter and costs of treatment larger, and the associated spatialized treatments.65

2 Methods66

2.1 Theoretical model67

We consider theoretical landscapes represented by a regular grid of n× n cells with a forest seral stage succession68

module. We use a stylized representation of the link between vegetation age, habitat, and wildfire risk. We denote69

by At the set of equal, standardized area cells in the theoretical landscape of dimension n × n (hereafter referred70

to as being of size= n) in period t. Each cell ai at time t is characterized by a seral stage: absent, young, or old.71

At each time step, it changes stage until it is in the ’old’ stage, where it remains. Upon treatment, a cell’s seral72

stage is set to ’absent’ (see equation A.1 in appendix A).73
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A cell offers wildlife habitat once it is ’mature’ (eg seral stage is at least ’young’), i.e, when the time elapsed since74

the last burn reaches the maturity threshold (eq. A.2). We assume that habitat quality is uniformly distributed75

among habitat patches and that neighboring cells are reachable, conditional on being ’mature’. After the wildlife76

habitat maturity threshold, a cell can turn at critical risk of wildfire during a ’normal’ hot season. We assume an77

Olsen-type model of flammability (Olson 1963, McCarthy et al. 2001), where age is the main predictor. Therefore,78

after the ’high fuel load’ threshold is crossed, the cell is regarded as ’high risk’ from then on, until treatment79

suppresses this risk (eq. A.3).80

We define cells to be connected if (i) they are within an 8-cell neighborhood and (ii) share the same status.81

Regarding biodiversity, we focus on general characteristics related to landscape structural connectivity rather than82

functional connectivity, as we are agnostic about effective species (Fahrig et al. 2011). We assume that species are83

able to disperse from one patch to another, and that habitat quality is uniformly distributed conditional on habitat84

being available. We consider the wildfire risk through the lens of potential spread, which is only driven by fuel.85

Consistent with the literature (see Peterson et al. (2009), Pais et al. (2021b), Gonzalez-Olabarria et al. (2023)), a86

wildfire can spread in any direction, conditional on neighbor cells with high risk. However, if surrounding cells do87

not display high risk, fire does not spread.88

We use a network structure to apprehend the landscapes. We transform At the set of cells constituting the89

landscape into graphs Gt whose vertices Vt (or nodes) are the cells in the landscape, and edges Et represent the90

connections between cells. We partition the landscape in two graphs, GBt
and GFt

, each describing the network91

of mature habitat and risky patches (see fig. 1 for a representation). Landscape ecology has long used numerous,92

theoretically grounded indicators to analyze landscapes (Urban and Keitt 2001, Minor and Urban 2008). We use93

a global connectivity indicator that satisfies Pascual-Hortal and Saura (2006) criteria, grounded in graph theory,94

that offer a reformulation of Rachmawati et al. (2016) (see Appendix A.3).95

We define the global connectivity index of habitat and risky patches in landscape A(t) as:96

Hi(A(t)) = card(Vit) + 2× card(Eit) with i ∈ {B,F} (2.1)

This indicator considers that a habitat patch is connected to itself (i.e, within a habitat patch, there is no97

barrier) and whether it is connected to other patches. It implies lower connectivity when the distance between98

patches increases, attains its maximum value when a single habitat patch covers the whole landscape, indicates99

lower connectivity as the habitat is progressively more fragmented, considers negative the loss of a connected or100

isolated patch, and detects as more important the loss of bigger patches, of key and less important steppingstone101

patches.102

To manage the expected damages resulting from wildfires, the land planner can decide to undertake specific103

treatments, in the form of a combination of controlled burns and/or mechanical thinnings. Upon treatment, we104
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assume that vegetation age in the cell is reset to ’absent’: the wildfire risk vanishes, but so does the habitat and105

its connection to surrounding cells. Given the tension between maintaining habitat and reducing wildfire risk,106

the land planner aims to minimize a deterministic measure of connectivity of the high fuel loads in the landscape107

while maintaining a given level of biodiversity habitat connectivity under a budget constraint, over a planning108

horizon of length T . For the sake of the analysis, we focus on two layers of complexity over time and space: risk109

connectivity and biodiversity habitat. We do not consider heterogeneity in the economic costs or benefits (i.e,110

homogeneous treatment costs and no patch-specific asset to protect). The framework is however amenable to such111

a prioritization. We also assume that the budget cannot be banked, and has to be utilized in each period, consistent112

with operational rules. Moreover, as the budget is constrained in each period, the measure of risk is bounded and113

the planning horizon is finite, we rule out discounting and assume each generation matters as much to the social114

planner.115

The optimization problem is :116

min
x

[
T∑

t=1

HF (A(t))

]
(2.2)

Such that:

Ai(t+ 1) = min((Ai(t) + 1)(1− xi(t)), 2), t = 1, ..., T, ∀i ∈ C (2.3)

HB(A(t)) ≥ Biod, t = 1, ..., T (2.4)∑
i

xi(t) ≤ Budget, t = 1, ..., T (2.5)

A(0) given (2.6)

x(t) ∈ {0, 1}n
2

(2.7)

We abstract from decision-making in a risky environment, as it has been extensively described in economics117

and decision theory (Mouysset et al. 2013). Moreover, we mimic the role of risk aversion by varying the level of118

habitat connectivity constraint the decision maker chooses. We solve the dynamic, integer program of the landscape119

manager using dynamic programming. Dynamic programming provides a temporal decomposition of the initial120

problem defined over T periods, into T simpler problems, as it relies on the ’optimality principle’1. Second, it121

provides feedback controls which are know to be more adaptive especially if shocks occur or uncertainties affect the122

states or the dynamics of the system . The outputs of the method are both the optimal policies x∗
j (t, A), i.e, the123

sequence of optimal controlled burns, and the optimal states A∗
j (t, A0) resulting from the optimal policies and the124

initial conditions125

1”An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first decision”. (See Bellman (1957), Chap. III.3., p.83)”
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We solve the land planner’s problem for every possible initial condition, thus giving rise to general conclusions126

on the properties of landscapes and treatments emerging from this problem, under various budget scenarios to127

account for climate change.128

2.2 Lanscape indicators129

To characterize the managed landscapes, we mobilize several indicators from landscape ecology and graph theory130

(see appendix B). First, we account for the risky and habitat areas in the landscape (eq. B.1). Second, to assess131

landscape connectivity/fragmentation and diversity in the context of fire mosaics (Bradstock et al. 2005), we use our132

connectivity metric (eq. 2.1), the number of components e.g. the number of maximal connected subgraphs within133

the graph, that is not connected to other vertices (eq. B.2) for the risky cells graph, as well as the corresponding134

areas. To specifically assess landscape diversity, we use the Simpson index (Simpson 1949) on seral stages (eq.135

B.3)2. However, the Simpson index does not account for the diversity of spatial patterns: a checkered landscape136

with two seral stages would be as diverse as a landscape with two large patches for each seral stage, according to the137

Simpson index. Therefore, we use the landscape shape index (eq. B.4), a normalized ratio between the perimeter138

of biodiversity habitat and its area (Patton 1975, McGarigal and Marks 1995). To disentangle the correlated effects139

of perimeter and area that affect the landscape shape index, we use a land type heterogeneity index, that averages140

the probability that, for each cell, neighbors in the 4 cardinal directions share the same land types (eq. B). The141

index ranges between 0, when the land type is the same across the whole landscape, to 1, in a checkered landscape.142

The index assesses whether the landscape is a mosaic (Bradstock et al. 2005), and if it displays structural diversity,143

conducive to diverse communities and functional diversity.144

2.3 Computational experiments145

Our problem can be viewed as a critical node detection problem, i.e, a problem of locating the nodes that best146

degrade connectivity metrics (Arulselvan et al. 2009). Problems of the critical node class are computationally147

difficult (e.g. NP - Hard) in a single graph (Arulselvan et al. 2009, Matsypura et al. 2018). Efficient heuristics to148

find near-optimal solutions exist and leverage perturbations around local solutions (Arulselvan et al. 2009, Zhou and149

Hao 2017). Our problem is a constrained, integer optimization problem that constrains not only the set of nodes150

to be removed but also metrics relative to a larger graph structure (e.g. supergraph of risky patches), biodiversity151

habitat. For this reason, existing heuristics may not perform well on our problem. Moreover, the complexity of our152

combinatorial problem increases with landscape size and vegetation age class exponentially, displaying the ’curse153

of dimensionality’ (Bellman 1957). Therefore, we limit ourselves to studying all the initial conditions in landscapes154

of size n = 3 and 4. While this formulation appears simplifying, it encapsulates the main mechanisms displayed155

2Similar results can be found with the Shannon index (Shannon 1948). To avoid issues related to degenerate values and logarithms,
we focus on the Simpson index.
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in similar models (Rachmawati et al. 2016; 2018). It allows us to solve the problem for the whole set of initial156

conditions, for the whole range of biodiversity habitat connectivity constraint values, over 20 years. In our analysis,157

we consider a range of budget values for treatment costs normalized to 1. As common in the literature, we can158

express the budget as a share of land being treated ranging from 5% to 44% of the surface area. These values159

encompass historical and projected policies in Australia (Burrows and McCaw 2013), the United States (Office160

2019) and Southern Europe (Fernandes et al. 2013).161

Of all the 3n
2

initial conditions landscapes, we only keep landscapes that are unique up to a permutation3.162

This results in a sharp reduction of landscapes to consider, from 19, 683 initial conditions to 2861 unique initial163

landscapes for n = 3, and from 43, 046, 721 initial to 5, 398, 082 unique initial landscapes for n = 4. We focus on164

exact optimal solutions for all the initial conditions of these small-scale landscapes and implement our own solution165

algorithm in Python 3.9.13. Data and code are publicly available.166

3 Results167

3.1 Steady states168

Our simulations show that 100% of the initial landscapes converge in finite time towards a steady state solution,169

that minimizes wildfire risk while satisfying budgetary and habitat connectivity requirements. Steady states are170

landscape cycles with finite periods. Analyzing the steady-state cycles (and the unique landscapes that form them)171

drastically reduces the set of landscapes to analyze: they represent 2% (resp. 0.001%) of the initial landscapes of172

size n = 3 (resp. n = 4). Our model highlights the convergence of landscapes towards types that can be managed173

to deliver several objectives. As landscape size increases, the number of steady state landscape cycles increases,174

but the power of convergence increases as well (e.g. ratio between initial configurations and effective steady state175

landscapes): from 19 683 initial landscapes when n = 3, 51 steady states emerge and from 43 046 721 initial176

landscapes when n = 4, at most 95 diverse steady-state landscapes emerge. Focusing on steady states makes all177

the more sense as landscape size increases.178

Eventually, figure 2 shows that conditional on data availability on every patch, the more the decision maker179

wants to conserve biodiversity, the fewer steady-state landscapes she has to consider. An increase in the habitat180

requirement reduces the room for maneuver. Indeed, budget acts as a complexifying factor: the larger the budget181

(relative to costs), the larger the set of steady-states to consider. Aiming for relatively large habitat connectivity182

reduces the set of viable strategies to be considered and can more efficiently guide policy.183

3That is to say, landscape A is included in the set of initial conditions I if and only if for any element B in I, A is not a permutation
(eg can be obtained through rotations or symmetries) of B
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3.2 Wildfire risk reduction and habitat connectivity in steady state landscapes184

Figure 3 shows the wildfire risk reductions and habitat requirements normalized by their respective maximum185

values for landscapes of size n = 3 and 4. The maximum value for both risk and habitat corresponds to a landscape186

covered in ’old’ vegetation, which we take to be the counterfactual. Randomly assigned treatments do generate187

risk reductions but are not cost nor habitat-efficient. Following our spatial optimization procedure, it is clear that188

implementing fuel treatment reduces wildfire risk while supporting biodiversity habitat. Figure 3 shows that these189

two objectives come as a trade-off, albeit moderate: indeed, increasing habitat requirements increases the remaining190

risk, but there are combinations that can satisfy large habitat connectivity and risk reductions. Budget is a key191

factor in risk reduction, as it relaxes the trade-off between the two objectives: increasing the budget reduces the192

wildfire risk while maintaining a range of biodiversity constraints. When habitat constraints are large, however,193

the marginal effect of budget is limited, and a larger remaining risk needs to be accepted. For example, with a194

budget of 25% of land to be treated (with landscape size n = 4), and no habitat constraint, risk can be reduced195

up to 80% compared to the counterfactual scenario. However, when the habitat constraint is at 60%, only 70% of196

risk reduction can be achieved. Moreover, this risk reduction can be achieved with a lower budget. Conversely, as197

the costs of treatment increase, for a stable budget, the remaining risk increases sharply, and factoring in habitat198

requirements in the decision-making is not necessary for targets below 80%.199

3.3 Properties of steady state landscapes: surface, fragmentation, and diversity200

Figure 4 displays, for each class, the most frequent steady-state cycle for landscapes of size 3 and 4 for each201

biodiversity target. Figure 5 shows the indicators relative to the surface and components of the high-risk graph202

and figure 6 shows the indicators related to diversity, both for landscapes of size n = 3 and 4, averaged over all the203

steady-state landscape cycles.204

Previous results show that budget increases risk reduction, conditional on habitat connectivity constraint being205

low. Focusing on zones A and A′ of the panels of figure 5 shows that risk reduction primarily comes from a206

reduced surface (panels 5a and 5b), and an increase in the number of components, i.e, disconnected high-risk207

patches (panels 5e and 5f). Overall, the high-risk area is reduced and the number of components increases, thus208

resulting in smaller largest high-risk component area (panels e and f). As more connected habitat area needs to209

be protected, the high-risk surface increases (fig. 4 panels 5a and 5b) and the number of high-risk components210

drastically reduces. The landscapes collapse to the same dominant structure (fig. 4), where the high-risk area is211

(almost) maximal and there is one large, well-connected component. Overall, landscapes are riskier but also feature212

larger, better-connected biodiversity habitat. For large budgets (e.g. 3 and 4), these effects are non-trivial: the213

number of components (weakly) increases first, small components either disappear or increase in size (see figure 4214

for budget 4 in panels A′, B′ and C ′), risky patches are reallocated to connect separated components before the215
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high-risk surface increases.216

Landscape diversity unambiguously increases with the budget (panels 6a,6b, sections A and A′). As more units217

are treated, the evenness of seral stages increases in the landscapes. When the habitat objective is low, the spatial218

diversity of landscapes increases with the budget (panels 6c, 6d): even though the relative area of habitat decreases219

with the budget, the shape of habitat is more irregular, and the landscape is more of a mosaic. In this context, cells220

with a ’young’ seral stage act as stepping stones and corridors between high-risk habitat patches. When habitat221

objectives increase, diversity collapses both quantitatively and qualitatively (fig. 6). The Simpson index collapses222

from panels A (resp. A′) to G (resp. F ′), as land types gradually homogenize (see fig. 4 for an illustration)223

across all budgets. Moreover, landscapes form less of a mosaic, and are more clumpy, as displayed by the LSI and224

Land type heterogeneity index. Overall, for large habitat targets, landscapes tend to homogenize and to be better225

connected, although less quantitatively and qualitatively diverse.226

Results are consistent across landscape sizes while they display more variability for size n = 3, as border effects227

play a larger role.228

3.4 Spatial allocation of optimal management at the steady-state landscape cycle229

Figures 7a and 7b display the number of fuel treatments in the steady-state cycles, for various budgets and habitat230

connectivity constraints. Treatment allocation follows the evolution of the high-risk area (fig 5a and 5b): the larger231

the budget, the larger the treated area, the budget constraint is always satiated. However, when biodiversity targets232

increase, the budget constraint is no longer satiated.233

Figures 7c and 7d display the average spatial location of treatments in the steady state cycles. The darker the234

cell, the higher the frequency of treatment. First, not all cells are equally treated. For low levels of biodiversity235

constraint, panels A and A′ of figures 7c and 7d show that central cells are primarily treated, and when the236

budget increases, cells on the edges get treated, while corner cells are never treated. In the context of critical node237

detection, when the ecological requirements are low, the high-risk graph is primarily considered, and nodes with238

the most cost-efficient risk reduction, i.e, with the largest degree are targeted. Once the most connected cells are239

treated, lower-degree cells get treated.240

When habitat constraints increase, several effects come at play. Not only does the number of treatments241

decrease, but the spatial allocation also changes. For example, in panels A and B for budgets 3 and 4, panels C242

and D for budget 2 and panels E and F for budget 1 in figure 7c, the number of treatment remains the same but243

is spatially reallocated to lower degree nodes. Treatments are spatially reallocated before being reduced. In this244

context, as the relative weight of the habitat graph increases, treating the most cost-efficient risk-reducing nodes245

also degrades habitat connectivity. Therefore, as habitat targets increase, edge and corner (e.g. low degree nodes)246

are being treated and habitat connectivity is maintained.247
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4 Discussion248

4.1 Confirmation and generalization of existing results249

Our analysis of the exhaustive set of initial conditions for small-scale landscapes confirms existing results in the250

literature. We argue that they bring robust evidence and complement the existing literature to derive general251

conclusions.252

Our model encompasses 3 seral stages and 1 composite vegetation type and proves the convergence of every253

initial condition to a steady state cycle, irrespective of the initial configuration. We extend Minas et al. (2014)254

that find convergence patterns for homogeneous landscapes only, i.e, landscapes where the initial vegetation age is255

uniformly distributed. We show that in the event of environmental perturbations that do not disrupt ecosystem256

dynamics, an appropriate policy can recover the previous equilibrium risk and habitat. We hypothesize that as257

long as the risk/ seral-stage relationship reaches a plateau for every vegetation type on the landscape, convergence258

should be observed.259

Our results display a concave production possibility frontier (PPF) between wildfire risk reduction and habitat260

connectivity, consistent with PFF literature (Arthaud and Rose 1996, Calkin et al. 2005). Our results also confirm261

that trading one objective for the other is not as efficient as increasing the policy budget to reconcile objectives.262

We show that increasing the policy budget nonetheless has diminishing returns for risk reduction, as highlighted263

by Wei et al. (2008), Yemshanov et al. (2021) and Pais et al. (2021b).264

Our study yields clear results in terms of landscape ecology, leveraging concepts from landscape ecology, and265

highlighting the spatial mechanisms underlying the shape of PPF. We show that treatment allocation targets the266

most central nodes first and then focuses on less connected nodes (e.g cells closer to the border of the landscape)267

when habitat goals are low. In doing so, we do find general treatment allocation principles where previous studies268

on larger landscapes could not (Minas et al. 2014, Rachmawati et al. 2016), generalize smaller scale (Konoshima269

et al. 2008) and case study specific (Yemshanov et al. 2021, Pais et al. 2021a) results.270

Leveraging a dynamic integer programming, graph theoretic framework on small-scale landscapes, we show that271

cell-level metrics help formalize and understand the drivers of treatment allocation and rationalize existing results.272

Furthermore, we show that while prioritization approaches based on a graph theoretic framing fare very well in an273

unrestricted set-up, including biodiversity habitat targets augments the problem’s complexity. We generalize case274

studies (Yemshanov et al. 2022) and show less central high-risk nodes need to be targeted to achieve risk reduction275

and safeguard biodiversity habitat.276

4.2 Caveats and methodological perspectives277

Our analysis tackles the exhaustive set of landscapes of size n = 3 and 4. Our approach allows us to study the278

steady-state patterns emerging from any initial condition, replicates existing results in larger landscapes, and sheds279
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light on the mechanisms underlying the wildland dilemma. Increasing landscape size is incompatible with this280

approach, as we would run into a dimensionality curse (Bellman 1957). To conserve our exhaustive approach,281

different proof mechanisms would be required. Nonetheless, if landscape size is of the essence for actual policy282

recommendation, so are other layers of information such as habitat quality, treatment costs, and values at risk283

heterogeneity. These other layers would reduce the computational burden, and we believe our results, targeting284

the most cost-efficient, risk-reducing, and habitat-conserving strategies, would still apply.285

In our model, we use a simple relationship to characterize the link between the seral stage, habitat formation286

for a single species, and wildfire risk and severity. This choice is motivated by the existence of a lower bound287

for a fire return interval and drives our ability to adopt our exhaustive approach. Increasing the number of seral288

stages would help to complexify the relationships governing habitat formation and wildfire risk and severity: in289

some ecosystems, wildfire risk and severity may be higher for young vegetation than for older and may not be290

linear (Taylor et al. 2014). On the other hand, some species may require old-growth forests to survive, not ’young’291

forests, and old-growth forests may also be more fire-resilient (Lesmeister et al. 2021). As the number of seral stage292

augments, convergence towards steady-state landscape cycles would take longer, but we hypothesize it would still293

occur. Moreover, as long as wildfire risk and habitat quality are in conflict, a trade-off would govern treatment294

allocation. Multiple seral stages may be targeted for fuel treatment, depending on their location and properties,295

but we claim the general mechanism would still apply: in a graph weighted for different risk and habitat properties,296

centrality and connectivity would still guide treatment allocation.297

We implicitly assume that focusing on a given species’ habitat would also provide habitat for a variety of298

species and be conducive to functional diversity. However, this does not imply that all species would benefit from299

maintaining a given habitat type (Saab et al. 2022). Moreover, the lack of structural diversity may cause the trophic300

web of the targeted species to collapse. Therefore, management objectives should include structural diversity. In301

this case, landscapes could not satisfy extreme habitat connectivity targets and diversity targets. For intermediate302

goals, however, we claim that treatment allocation would still aim at fragmenting the landscape, and node centrality303

and connectivity would still govern allocation.304

Eventually, we chose to abstract from a stochastic ignition process affecting the landscape. As a thought305

experiment, imagine a Bernoulli-distributed, high-risk area independent probability of ignition in each period. If306

part of the landscape ignites, all that remains is the unburnt habitat, while if not, all habitat remains. A decision-307

maker faced with maximizing the expected payoff in this scenario would solve the reciprocal of our problem. On308

the one hand, she has to ensure that the high-risk cells in the landscape are not ’too’ connected, to maximize the309

remaining habitat in the event of a wildfire. On the other hand, she wants to maximize connectivity for wildlife310

when there is no wildfire. As a result, the trade-off she faces, and the resulting spatial allocation of treatment would311

be the same. The stochastic nature of ignition may change the steady state cycles, but convergence would not be312

impossible. If the probability of wildfire increases, she focuses more on maintaining a ’young’ seral stage over the313
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landscape. In this setting, increasing the probability of ignition would act as a decrease in our habitat target as314

well as an increase in the budget available for policy. With our model, we are able to disentangle these two effects315

and understand how each constraint would play. We claim we match with actual policy, where the budget is not316

fully endogenously determined.317

4.3 Conclusion and policy relevance318

While there is a dilemma for land managers between lowering wildfire risk and severity and maintaining species319

habitat connectivity, reconciling the two objectives is not a dead end. This is an important result for land planners320

as biodiversity habitat targets are gradually included in policy agendas (for example, the recent pledge by the321

participants to the Conference of Parties on Biodiversity in Montreal to preserve 30% of land and oceans by 2030322

for biodiversity4). It shows that if policymakers can commit to a given budget over time, these biodiversity targets323

can be reached and a management cycle that minimizes wildfire risk can be implemented in wildlands. Moreover,324

as steady-state cycles are reached, the uncertainty over future land uses is resolved while achieving policy goals.325

In the face of climate change, treatment costs are expected to increase (Kupfer et al. 2020). The decreasing326

marginal efficiency of budget to reduce risk highlights that as climate change increases the costs of treatments, risk,327

and damages will increase at an increasing rate, unless the budget is changed accordingly.328

Our analysis shows that budget should be determined by factoring a careful, ex-ante analysis of treatment329

costs, the policy maker’s risk aversion towards a measure of wildfire risk and severity, and ecological preferences.330

Indeed, low budget-to-cost ratios are incompatible with high risk and severity aversions and/or large ecological331

requirements.332

As wildfires and biodiversity habitat destruction are challenges in the face of global warming, finding policy333

guidance tools is of the essence. Many studies focus on specific case studies or limited ranges of potential initial334

conditions. We develop a simplified ecological model of habitat and wildfire connectivity to guide policymakers in335

the form of general principles. Reducing wildfire risk and accommodating wildlife habitat is possible with carefully336

designed policies, where budget plays a key role. However, it is impossible to achieve drastic risk reduction without337

harming biodiversity habitat. General principles of treatment allocation in the landscape are derived, and the338

concepts of graph theory provide an operational toolbox to understand the underlying mechanisms. Landscape339

patches that display high wildfire risk seral stages and are well connected to other patches should be treated first.340

When habitat targets are included, tackling lower-risk patches is of the essence to maintain habitat connectivity.341

Our article summarizes and generalizes how policies should be implemented, both in terms of budgets and342

spatial allocation, to protect and enhance ecosystem health.343

4See Target 2 in the Keunming-Montreal Global Diversity Framework, 2022
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Appendix362

A Theoretical model363

A.1 Vegetation dynamics364

In cell i at time t, vegetation ages Ai(t) evolves according to the following :365

Ai(t+ 1) = (Ai(t) + 1)(1− xi(t)), t ∈ {0, 1, ..., T},∀i ∈ C (A.1)

Where xi(t) ∈ {0, 1} is a binary variable, representing the treatment status of cell i at time t. Correspondingly,366

the age vector across the landscape is A(t) = {Ai(t)}i∈C .367

A.2 Mature habitat and risky patch designation368

Cell i is labeled ’mature’ to host wildlife in year t as:369

Maturei (A(t)) =


1 if Ai(t) ≥ m

0 otherwise

(A.2)

Wherem is the ’mature’ threshold. Correspondingly, the vector of mature cells across the landscape isMature (A(t)) =370

{Maturei (A(t))}i∈C371

Similarly, cell i is labeled as ’high fuel load’ in year t as:372

Highi (A(t)) =


1 if Ai(t) ≥ d

0 otherwise

(A.3)

Where d is the ’high fuel load’ threshold. Correspondingly, the vector of high fuel load cells across the landscape373

is High (A(t)) = {Highi (A(t))}i∈C374

We assume that the maturity threshold is crossed before the high risk threshold, i.e m < d.375

A.3 Global connectivity index and graph theory376

Let a grided landscape of size n, where for each cell ai in the set of cells A in the landscape, one defines Φi the set377

of cells connected to cell i (i.e, cells share the same status and can only be in the 8-direction direct neighborhood).378

Moreover, let Qij be a binary variable such that Qij = 1 if cells ai and aj are connected, 0 otherwise. Minas et al.379

(2014) define the following connectivity metric over a landscape:380

14



∑
i∈C

∑
j∈Φi

Qij (A.4)

Now view the landscape as a graph G, with vertices V and edges E such that G(V,E). For the proof, assume381

that Y is a binary vector such that Yi = 1 if cell i is ’high risk’ and 0 otherwise, and that we focus on the ’high382

risk’ graph on the landscape. The argument is identical in the case of mature habitat.383

In graph theory, an adjacency matrix K for an undirected graph is a binary, symmetric, square matrix of384

dimension card(V )2 where kij = 1 if vertices i and j are connected, 0 otherwise. In our context, it is clear that385

kij = Qij . Equation A.4 can be reformulated as :386

Y ′KY =
∑
j

(
Yj

∑
i

Yikij

)
=
∑
j

Yj

Yjkjj +
∑
i̸=j

Yikij



Given the symmetric nature of K, ∀i ̸= j, kij = kji. Each cell is connected to itself so kjj = 1 .Yi ∈ {0, 1} i.e387

Y 2
i ∈ {0, 1}:388

Y ′KY =
∑
j

Y 2
j +

∑
i ̸=j

YiYjkij


=
∑
j

Yj + 2
∑
j<i

∑
i ̸=j

YjYiaij


The first sum is the number of cells either ’mature’ or ’high risk’, i.e, the cardinal of the nodes of the ’high risk’389

graph e.g card(V ). In the second sum,
∑

i ̸=j YjYiaij is the number of connections of cell i to cell j, as the product390

YiYjaij = 1 if and only if cell i and j share the same status (Yi = Yj) and are in the 8-cell neighborhood (aij = 1).391

By definition, the sum of the number of connections of each cell to other cells is card(E). Hence, for a set of cells392

C, reformulated in terms of graph theory :393

∑
i∈C

∑
j∈Φi

Qij = card(V ) + 2card(E) (A.5)

A.4 Dynamic programming equation394

The Bellman equation links current and future payoffs in a recurring fashion.395

V (t, A) = min
x∈{0,1}n2

(H(A) + V (t+ 1, At + 1)) (A.6)
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subject to constraints (2.3), (2.5), (2.4) and (2.7).396

We use backward induction given by the final value V (T,A) = H(A) to dynamically solve the program.397

B Landscape indicators398

Area We use the number of vertices (nodes) for both subgraphs and take into account cell dimensions:399

Area(Gi) = card(Vi) for i ∈ {B,F} (B.1)

Number of components

#componentsi = card(Maximal connected subgraphs of Gi for i ∈ {B,F}) (B.2)

Simpson diversity index: let pi be the proportion of land type i in the landscape. The Simpson diversity index400

is :401

SIDI = 1−
∑
i

p2i (B.3)

Landscape shape index: following McGarigal and Marks (1995), the adapted LSI index from Patton (1975) in402

a raster landscape is:403

LSI =
0.25× perimeter(G)

n
(B.4)

Where perimeter(G) is the perimeter of the cells comprised in the graph as vertices.404

Land Type Heterogeneity Index: let dij be a binary variable such that dij = 1 if patch i and j share the405

same land type. Define J as the set of neighbors in 4 directions (north, south, east, west) of cell i5. The land type406

heterogeneity index is :407

LTH =
1

N

N∑
i=1

(∑
j∈Ji

dij

card(Ji)

)
(B.5)

408

5The set Ji varies with cell i to account for edge effects
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A Figures612

Figure 1: Illustration of the habitat and fuel graphs for n = 3

In this graph, green cells support biodiversity habitat only, while red cells display high risk.
The high risk graph has two components (top right corner with 3 nodes, and bottom left corner with 1 node), while the biodiversity

habitat graph only has one.
Cells for which the value is 0 are not considered as nodes for both graphs, and are thus not connected to the rest of the graphs.

In the end, because high fuel load cells also support biodiversity habitat, the landscape can be represented as the overlap between the
two graphs, where orange cells are high fuel load and also support biodiversity habitat.
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Figure 2: Number of cycles as a function of biodiversity habitat and budget
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Figure 3: Production possibility frontier between constraint (as a % of maximum biodiversity sustainable in land-
scape) and wildfire risk for various budgets, and landscape size
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Figure 4: Most represented cycles for each biodiversity constraint level, for various budget and landscapes 3 × 3,
and 4× 4 (95% CI shaded)
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Figure 5: Assessment: surface, components of high-risk graph (95% CI shaded)
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Figure 6: Assessment: diversity (95% CI shaded)
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Figure 7: Treatment allocation : number, location
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